Streaming Algorithms for Maximizing Monotone Submodular Functions under a Knapsack Constraint

نویسندگان

  • Chien-Chung Huang
  • Naonori Kakimura
  • Yuichi Yoshida
چکیده

In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access only to a small fraction of the data stored in primary memory. For this problem, we propose a (0.363− ε)-approximation algorithm, requiring only a single pass through the data; moreover, we propose a (0.4 − ε)-approximation algorithm requiring a constant number of passes through the data. The required memory space of both algorithms depends only on the size of the knapsack capacity and ε. 1998 ACM Subject Classification G.2.1 Combinatorics

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Pass Streaming Algorithms for Monotone Submodular Function Maximization

We consider maximizing a monotone submodular function under a cardinality constraint or a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access to only a small fraction of the data stored in primary memory. We propose the following streaming algorithms taking O(ε) passes: 1. a (1 − e − ε)-approximation al...

متن کامل

Streaming Algorithms for News and Scientific Literature Recommendation: Submodular Maximization with a d-Knapsack Constraint

Submodular maximization problems belong to the family of combinatorial optimization problems and enjoy wide applications. In this paper, we focus on the problem of maximizing a monotone submodular function subject to a d-knapsack constraint, for which we propose a streaming algorithm that achieves a ( 1 1+2d − ) -approximation of the optimal value, while it only needs one single pass through th...

متن کامل

Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms

We study the problem of maximizing constrained non-monotone submodular functions and provide approximation algorithms that improve existing algorithms in terms of either the approximation factor or simplicity. Our algorithms combine existing local search and greedy based algorithms. Different constraints that we study are exact cardinality and multiple knapsack constraints. For the multiple-kna...

متن کامل

Maximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017